Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Mater Chem B ; 11(16): 3484-3510, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2288921

ABSTRACT

Messenger RNA (mRNA) has become a key focus in the development of therapeutic agents, showing significant potential in preventing and treating a wide range of diseases. The COVID-19 pandemic in 2020 has accelerated the development of mRNA nucleic therapeutics and attracted significant investment from global biopharmaceutical companies. These therapeutics deliver genetic information into cells without altering the host genome, making them a promising treatment option. However, their clinical applications have been limited by issues such as instability, inefficient in vivo delivery, and low translational efficiency. Recent advances in molecular design and nanotechnology have helped overcome these challenges, and several mRNA formulations have demonstrated promising results in both animal and human testing against infectious diseases and cancer. This review provides an overview of the latest research progress in structural optimization strategies and delivery systems, and discusses key considerations for their future clinical use.


Subject(s)
COVID-19 , Pandemics , Animals , Humans , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , Nanotechnology/methods , Drug Delivery Systems/methods
2.
Front Immunol ; 13: 1007089, 2022.
Article in English | MEDLINE | ID: covidwho-2055023

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.


Subject(s)
COVID-19 , Exoribonucleases , IMP Dehydrogenase , NF-kappa B , Viral Nonstructural Proteins , Bortezomib , Cytokines/metabolism , Exoribonucleases/metabolism , Humans , IMP Dehydrogenase/metabolism , Inosine , Interleukin-6 , Interleukin-8 , Mycophenolic Acid , NF-kappa B/metabolism , Oxidoreductases , Proteomics , Ribavirin , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
3.
Nucleic Acids Res ; 50(15): 8700-8718, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-1973223

ABSTRACT

FACT (FAcilitates Chromatin Transcription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated in both epithelial and natural killer (NK) cells. The histone acetyltransferase TIP60 contributes to the acetylation of SUPT16H middle domain (MD) at lysine 674 (K674). Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H in both epithelial and NK cells. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (HDAC1, EZH2), and further regulates their activation status and/or promoter association as well as affects the relevant histone marks (H3ac, H3K9me3 and H3K27me3). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, depletion or inhibition of SUPT16H is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that depletion or inhibition of SUPT16H also causes the remarkable activation of IFN signaling in NK cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in coordinating with BRD4 and regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of the FACT inhibitor CBL0137 to treat viral infections.


Subject(s)
Cell Cycle Proteins/metabolism , Epithelial Cells/metabolism , Interferons/metabolism , Killer Cells, Natural/metabolism , Signal Transduction , Transcription Factors/metabolism , COVID-19 , DNA-Binding Proteins/genetics , Epithelial Cells/immunology , High Mobility Group Proteins/genetics , Humans , Killer Cells, Natural/immunology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , SARS-CoV-2 , Transcriptional Elongation Factors/genetics , Zika Virus/metabolism , Zika Virus Infection
4.
Scientific Programming ; : 1-8, 2021.
Article in English | Academic Search Complete | ID: covidwho-1484097

ABSTRACT

Objective. Computed tomography (CT) scan is a method to predict the progression and prognosis of COVID-19. It is not sufficient merely to measure the prognosis of COVID-19 without other clinical methods. The purpose of this study was to investigate the association between the CT scan and clinical laboratory indicators as well as clinical manifestations. Method. A total of 335 patients were enrolled from January 26, 2020, to February 26, 2020, in Shandong province and Huanggang city. Demographic and clinical characteristics, laboratory variables, and the data from the CT scans were collected for analysis. Scatter plot analysis and correlation analysis were used to calculate the relationship between CT evaluation and other indicators. Multivariable linear regression analysis was used to establish a model for diagnostic and prognostic prediction. Age, CRP, LDH, and lymphocyte counts as independent variables were selected to develop a predictive model, and the results from the CT scans to reflect the degree of lung injury were taken as the dependent variable. Result. The median age was 44 years (IQR: 34–56);among them, 188 (56%) were male. Severe patients were older (56 vs. 40, P < 0.001). There were statistically significant differences in lymphocyte counts, platelet counts, C-reactive protein (CRP), lactate dehydrogenase (LDH), procalcitonin (PCT), and creatine kinase (CK) between the general patients and severe patients. We found that, without effective antiviral treatment, mild patients had a 6-day interval from symptom onset to CRP elevation, but in severe patients, CRP started to increase from day 2. Lung injury score from a chest CT scan and incidence of acute respiratory distress syndrome (ARDS) were significantly higher in severe patients than in mild patients. Lung injury score from a chest CT scan was closely correlated with CRP (rs = 0.704, P < 0.01), and they reflected the severity of the disease. The receiver operating curve (ROC) value of the injury score from the chest CT scan was 0.854 (95% CI: 0.808–0.901), and the area under the curve (AUC) value of CRP was 0.823 (95% CI: 0.769–0.878). Conclusion. The results from CRP and chest CT scans were indicators of the severity of COVID-19. Combining patient age, CRP, LDH, and lymphocyte counts, we developed a model that could help to predict lung injury/function of patients with COVID-19. [ABSTRACT FROM AUTHOR] Copyright of Scientific Programming is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL